Preparation and Structural Characterization of Di-µ-azido-bis [azido(2-aminopyridine) aquo]dicopper(II), $[\text{Cu}(2\text{-ampy})(N_3)/(H_2O)]$

MOHAMED A. S. GOHER

Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt and THOMAS C. W. MAK *Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong* Received October 5, 1983

Di-p-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), \int *Cu(2-ampy)* $\left(N_3\right)_2$ $\left(H_2O\right)_2$, was synthesized and characterized by X-ray crystallography. The *crystals are triclinic, space group PI, with a = 7.142-* (1), $b = 7.812(1)$, $c = 9.727(1)$ Å, $\alpha = 96.52(1)$, β = 92.52(1), γ = 113.47(1)^o, and Z = 1. The struc*ture was refined to* $R_F = 0.030$ *for 1960 observed MoKa diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and p(l)-bridging azido groups. Each copper(H) atom is further coordinated by a 2-aminopyridine ligand* (via *its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 A above the N4 basal plane (Cu-N (ring) = 2.001(2), Cu-N (azide) =1.962(3)-2.018(2) A] towards the apical aquo ligand (Cu-0 = 2.371(2) &). Each water molecule forms an intramolecular O***H-N (amine) acceptor* $hydrogen$ *bond, and is linked by two* $O-H...N$ *(terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.*

Introduction

The factors influencing the mode of bridging in binuclear $M_2(N_3)_2$ systems, that is, whether the azide groups function as one-end bridges forming a fourmembered ring or as end-to-end bridges forming an eitht-membered ring, are not fully understood [l]. For instance, X-ray structural determinations have shown that while di- $\mu(1,3)$ -azido bridging of the latter type exists in $Cd(py)₂(N₃)₂ [2]$, the two azide groups are crystallographically distinct with different structural environments in $Cu(py)₂(N₃)₂$ $[3]$. In the copper(II) complex, one azide ligand is monocoordinate whereas the other coordinates asymmetrically to three different metal centers.

As the copper(I1) ion forms coordination compounds of a rich variety of stereochemistries [4,5], it would seem that the reaction of α -substituted pyridines, rather than pyridine itself, with copper(I1) azide might lead to a modification of the bonding mode of the bridging azide ligand in the resulting complexes. During the course of our investigation of metal azide complexes containing various substituted pyridine ligands $[6, 7]$, we isolated a 1:1 complex of copper(I1) azide with 2-aminopyridine (hereafter abbreviated as 2-ampy) which crystallizes with an additional water molecule. We determined its structure by spectroscopic and X-ray methods, in order to elucidate the details of molecular and coordination geometry and to appraise the steric effect of the organic ligand on the mode of the azide bridging.

Experimental

Preparation of [Cu(2-ampy)(N₃)₂(H₂O)]₂, 1

To $CuSO_4 \cdot 5H_2O$ (2 mmol) in 30 ml of water was added 2-ampy (from BDH, 4 mmol) dissolved in boiled ethanol (10 ml). Upon slow addition of NaN₃ (4 mmol) dissolved in a minimum of distilled water, a greenish-brown colloidal precipitate was formed immediately. The mixture was then stirred for 30 min. Well-formed black crystals of I, together with a greenish powder*, were isolated by allowing the final mixture to stand for several weeks.

Elemental Analysis and Spectral Measurements

Micro-analyses of C, H, and N were performed on a Perkin-Elmer 240 Elemental Analyser. Copper was determined by titration against disodium EDTA after decomposition of the complex by boiling with mixtures of concentrated HNO₃ and HCl and evaporation several times. Elemental analysis results (%) for the crystalline product of empirical formula $C_5H_8N_8OCu$ were as follows, with calculated values in parentheses: C 23.85(23.13); H 3.17(3.10); N 43.20(43.14); Cu 24.73(24.45).

 $\overline{\mathbf{S}}$ and to be a mixture of high $\mathbf{C}_\mathbf{S}(\mathbf{N}, \mathbf{C})$ content by IR spectroscopy.
Contractor

 I_1 I_2 I_3 I_4 I_5 I_7 I_8 I_{1000} I_{1000} $\frac{1}{2}$ and $\frac{1}{2}$ spectra in the region $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ spectrophotowere recorded on a Unicam SP 2000 spectrophotometer. Solid samples were measured as Nujol mulls and the liquid 2-ampy ligand as a capillary film. Reflectance spectra of solid complexes were measured over the 220-1000 complexes were mea- $\frac{1}{2}$ internal instrument with $\frac{1}{2}$ and $\frac{$ VSU-1 instrument with MgO as a standard and diluent.

X-Ray Crystallography

 μ single crystal of approximate dimensions of a single contract of a si A single crystal of approximate differentiations $0.30 \wedge$ 0.28×0.12 mm was centered on a Nicolet R3m four-circle diffractometer system. Accurate unit-cell dimensions were obtained from least-squares refine-
ment of the 2 θ values of 24 strong reflections with non-zero diffraction indices and x angles within the $\frac{1}{200}$ (or 270) +30[°]. Data collection and reducting σ (or 270) = 50. Data concerton and reduction were conducted using established procedures [8], and pertinent crystallographic information are
summarized in Table I. $\frac{1}{2}$ Intensity statistics strongly favored space group $\frac{1}{2}$ favored space group $\frac{1}{2}$

 $\frac{1}{2}$ intensity statistics strongly ravored space group determine based on negative quarter primeries in the negative quarter in the contract of the c $f(x)$ first non-hydrogen atoms in the asymmetric unit of $f(x)$ fifteen non-hydrogen atoms in the asymmetric unit were located from the best E -map. After several cycles of blocked-cascade [10] least-squares refine-
ment, the four aromatic H atoms were geometrically

TABLE I. Data Collection and Processing Parameters.

 $g = \frac{1}{4}$ (C-H $\frac{1}{4}$ b), and fixed at 0.96 $\frac{1}{4}$, assigned $\frac{1}{1}$ is the ride to ride thermal parameters of ride to ride the ride to ride to ride the ride to on their respective parent C atoms. At *RF = 0.039,* a difference Fourier map clearly revealed the posiuniversity is ourier may creatly revealed the posi- T_{max} or the remaining amilie and water protons. these four it atoms were assigned fixed isotropic superature ractors and included in the rinal leastfually cycles, which converged to the κ_F and κ_{μ} κ_F where shown in Table 1. The ring university happy was essentially flat, with residual extrema lying be-
tween 0.54 and -0.71 eA^{-3} .

 A ll C _computations were performed on a Data All computations were performed on a Data General Corporation Nova $3/12$ minicomputer with the SHELXTL program package [11]. Analytical expressions of neutral atom scattering factors were expressions of heutral arom searching factors were μ pioyed, and anon μ incorporated [12].
The final positional and thermal parameters for

the final positional and thermal parameters for le hon-hydrogen atoms are fisted in Faore in, atom labelling follows that shown in Fig. 1. Hydrogen coordinates are given in Table III, and bond distances and angles in Table IV. A table of structure factors is available on request from the second author.

Discussion

Molecular Structure and Crystal Packing

Dimeric molecules of I , which has crystallograph-Durielly indictures of T , which has crystallographany imposed a symmetry, contain both terminal centre is further coordinated by a 2-ampy ligand *via is* runner coordinated by a z-ampy ngand via its ring $N(1)$ atom and a water molecule. The stereochemistry about each Cu(II) atom is best described as a distorted square pyramid, with the water molecule at its apex and the metal atom raised by 0.17 Å above the N_4 basal plane. Atoms $N(4)$, $N(5)$, $\frac{1}{2}$ A door the M₄ basal plane. Alonis $N(\tau)$, $N(\beta)$, r_1 and r_2 is the width 0.22 A or the central $C_1 \mathfrak{p}_1 \mathfrak{p}_2$ ring. In conformity to the general trend for coordinated azides $[1]$, both azido ligands in I are very nearly linear and asymmetric, the shorter $N-N$ bonds. being more remote from the metal atoms. Comparison of their measured dimensions (Table IV) show that the asymmetry is greater in the case of $\mu(1)$ -
bridging.

 $\frac{1}{2}$ die aangeliste tetraaline van die verwys van d copper (II) and *CO* of *2/m is a molecular symmetry symmetry symmetry symmetry symmetry symmetry symmetry* $\frac{131}{131}$ allon (2) or $2/m$ molecular symmetry

TABLE II. Atomic Coordinates ($\times 10^5$ for Cu; $\times 10^4$ for other atoms) and Anisotropic Temperature Factors⁸ ($\rm \AA^2 \times 10^4$ for Cu; $\times 10^3$ for other atoms).

Atom \boldsymbol{x}		у	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Cu	8223(4)	36780(4)	41138(3)	383(2)	320(2)	196(1)	$-35(1)$	$-36(1)$	218(1)
C(1)	$-22(4)$	2589(3)	1028(2)	39(1)	28(1)	24(1)	$-1(1)$	0(1)	19(1)
C(2)	$-1263(4)$	1469(4)	$-173(3)$	45(1)	41(1)	23(1)	$-2(1)$	$-4(1)$	24(1)
C(3)	$-2781(4)$	$-235(4)$	$-69(3)$	40(1)	44(2)	37(1)	$-13(1)$	$-11(1)$	20(1)
C(4)	$-3100(4)$	$-846(4)$	1222(3)	40(1)	36(1)	51(2)	$-1(1)$	1(1)	6(1)
C(5)	$-1879(4)$	323(4)	2357(3)	46(2)	40(1)	34(1)	7(1)	7(1)	14(1)
N(1)	$-367(3)$	2035(3)	2288(2)	36(1)	29(1)	22(1)	$-1(1)$	$-1(1)$	16(1)
N(2)	1510(4)	4270(3)	956(2)	59(2)	40(1)	28(1)	5(1)	$-1(1)$	7(1)
N(3)	1074(3)	5020(3)	6057(2)	53(1)	54(1)	24(1)	$-11(1)$	$-11(1)$	39(1)
N(4)	2219(3)	5176(3)	7052(2)	43(1)	40(1)	25(1)	$-1(1)$	1(1)	27(1)
N(5)	3297(4)	5342(4)	8001(3)	69(2)	81(2)	36(1)	$-4(1)$	$-13(1)$	49(2)
N(6)	2643(4)	2484(3)	4648(2)	52(1)	41(1)	41(1)	$-11(1)$	$-16(1)$	31(1)
N(7)	2577(4)	1012(3)	4140(2)	54(1)	43(1)	31(1)	0(1)	$-7(1)$	31(1)
N(8)	2579(6)	$-408(5)$	3705(4)	145(3)	67(2)	75(2)	$-27(2)$	$-38(2)$	78(2)
Ю	3610(3)	6345(2)	3570(2)	38(1)	31(1)	45(1)	$-5(1)$	$-8(1)$	15(1)

^aThe exponent takes the form: $-2\pi^2\Sigma_i\Sigma_jU_{ij}h_ih_ja_i^*a_j^*.$

Fig. 1. A perspective view of the $\lceil Cu(2\text{-ampy})(N_3)_2(H_2O) \rceil_2$ molecule showing the atom labelling. Thermal ellipsoids are drawn at the 40% probability level, and hydrogen atoms have been omitted for clarity.

TABLE III. Hydrogen Coordinates $(X10³)$ and Assigned Isotropic Thermal Parameters^a ($A^2 \times 10^3$).

Atom	x	у	z	U
H(2)	-104	191	-106	60
H(3)	-364	-101	-88	60
H(4)	-415	-206	131	60
H(5)	-210	-97	325	60
H(N2a)	249(4)	485(4)	171(2)	70
H(N2b)	201(5)	440(5)	9(2)	70
H(Oa)	328(4)	737(3)	375(3)	60
H(Ob)	484(3)	662(4)	407(3)	60

^aForm of isotropic temperature factor: $\exp(-8\pi^2 \text{Usin}^2 \theta/\lambda^2)$.

the $\mu(1)$ -bridging azides. Despite the differences in charge and sub-units in these two dimeric $Cu(II)$ complexes, there is remarkably good agreement between corresponding bond distances and bond angles in the azido groups and the central $Cu₂N₂$ ring. The relevant dimensions reported for 2: Cu-N.

 $(bridging) = 2.018(1)$ Å, Cu-N (terminal) = 1.979(2) A, $Cu-N-Cu' = 103.7(1)°$, $N-N = 1.201(3)$ and 1.141(4) Å for bridging azide, $N-N = 1.118.8(2)$ and 1.150(2) Å for terminal azide, and $Cu-N-N =$ $128.2(1)$ ^o for terminal azide may be compared with those of *1* listed in Table IV.

All C and N atoms of the organic ligand are coplanar (within experimental error) and most of the measured dimensions closely match those reported for uncomplexed 2-ampy [14]. A notable difference is that the bond configuration about $N(2)$ in *I* is distinctly pyramidal, and the $NH₂$ group makes a dihedral angle of 33° with the pyridine ring, as opposed to an angle of 15° for the sp²-hydbridized amino group in 2-ampy. This is mainly caused by the formation of an intramolecular hydrogen bond $[N(2)-H\cdots O = 2.852(6)$ Å], and the geometrical requirement is such that the $N(1)$ -C(1)-C(2) angle is enlarged relative to the corresponding angle in free 2-ampy, so that the Cu-0 bond leans away from the organic ligand.

The water molecule plays a unique role in dictating the structure of the present complex. Besides serving as a ligand and forming an acceptor intramolecular hydrogen bond with the amino group, it is further involved in intermolecular donor hydrogen bonding $[0-H \cdots N(8)] = 2.901(7)$, $0-H \cdots$ $N(6)'' = 2.878(6)$ Å] with different terminal azido groups of two adjacent dimeric complexes. In the crystal structure (Fig. 2) the dimeric molecules are thus linked by $O-H...N$ hydrogen bonds to form layers parallel to (OOl), with only weak van der Waals interaction between the stacked layers. Full utilization of the lone pairs and protons of the water molecule in coordinate and hydrogen bonding also accounts for the fact that the Cu-0 bond of 2.371-

Symmetry transformations: ' $-x$, $1 - y$, $1 - z$; " x , $1 + y$, z ; "' $1 - x$, $1 - y$, $1 - z$.

Fig. 2. Steleo thawing of the crystal structure of *f*. Hydrogen bonds are represented by bloken lines. The

 (2) (3) (4) (5) (6) (1) (1) (1) (1) (1) (2) A is significantly joinger than the correspondent distance of $2.286(2)$ Å in aquo [N,N'-bis(2'-pyridinecarboxamido)-1,2-benzene $| \text{copper(II)} |$ [15]. In the latter complex, which possesses a similar squarepyramidal CuN₄O kernel, the water molecule forms
two hydrogen bonds $[2.825(3)$ and $2.769(3)$ Å]

with carbonyl 0 atoms of adjacent chelate molecules, but no use is made of the remaining lone pair.

Infrared Spectrum

The observed absorption bands in the infrared spectrum of complex I are listed in Table V. The

Structure of cU(II)-Azido *Complex* 121

 $T_{\rm T}$ is $T_{\rm eff}$ in $T_{\rm eff}$ and $T_{\rm eff}$ $T_{\rm eff}$ and $T_{\rm eff}$ $T_{\rm eff}$ and $T_{\rm eff}$ \overline{N}

Frequency ^a $(cm-1)$	Assignments ^b	References
3460vs 3340vs 3240vs	ν NH ₂ mixed with ν H ₂ O	[16]
2090-2060vs, br $\nu_{\rm as}$ N ₃ 1645ms	$\delta \mathrm{NH}_2$	[3, 17]
1625ys 1350m	δH_2O mixed with highest ν C–C	
1305s 1290s	v_s N ₃	$[18]$
670m 635m 605wm 585wm	δN_3	[18]
455m	ν Cu $-$ O	[19, 20]
400s l 380s	ν Cu $-N_3$	
290s	ν Cu $-N(L)$	{21}

 a_S = strong, m = medium, w = weak, br = broad, v = very. ^bGuided by comparison with the IR spectra of free 2-ampy and of $Co(2\text{-ampy})_2(SCN)_2$.

vibrational modes of the coordinated water molecule are superimposed on those due to the amino group, and this mixing of the ν OH and ν NH₂ modes accounts for the appearance of very strong bands in the $3500-3200$ cm⁻¹ region, and of the slight shifts of ν NH₂ fequencies in the spectrum of the complex compared to those (3420, 3340, and 3240 cm^{-1}) in the spectrum of free 2-ampy. Other band assignments and relevant references are given in Table V.

Electronic Spectrum

The electronic spectrum of the solid complex exhibits the $d-d$ transition band with a maximum around $14,490$ cm⁻¹ accompanied by a distinct $\frac{1}{2}$ absorption at $\frac{1}{2}$, $\frac{1}{2}$ corresponds very closely to the two that $\frac{1}{2}$ for $\$ corresponds very closely to that usually found for five-coordinate copper(II) complexes $[22, 23]$. The electronic spectra of a series of monoamine adducts of bisethylenediamine-copper(I1) complexes show an interest band above 17,000 cm-⁻ with a shoulder $\frac{d}{dx}$ the low frequency side, considered by Tomlinson and Hathaway [24] as being consistent with fivecoordinate stereochemistry. Kohout *et al.* [2.5] has coordinate stereochemistry. Kohout et al. $[25]$ has reported that the electronic spectra of cyanatocopper(I1) complexes derived from some imidazole ligands exhibit $d-d$ transitions as an intense band a_{max} cannot a_{max} transitions as an intense band where $x + 1,000 - 1,000$ cm. accompanied by a might wavenumber shoulder above 17.000 cm^{-1} . They suggested either five-coordinate or rhombic octahedral geometry, in line with those found for a series of mono(diethylenetriamine)copper(II) complexes [26] exhibiting similar spectra. More recently,

Fig. 3. Reflectance spectrum of solid complex I.

Hathaway *et al.* [27] reported for the regular trigonal bipyramidal $\left[\text{Cu}\left\{ \text{tris}\left(2\text{-aminoethyl}\right) \right\} \text{amine}\right\} (\text{NH}_3) \right]^{2+}$ cation an electronic spectrum showing also a high frequency shoulder, but as a whole shifted in respect of our case by $ca. 3000 \text{ cm}^{-1}$ to lower energies. The data suggest that Fig. 3 may be of value in the diagnosis of square-pyramidal coordination geometry in Cu(I1) complexes.

References

- 1 Z. Dori and R. F. Ziolo, Chem. *Rev.,* 73, 247 (1973). 2 I. AgreII, Acta Chem. *&and.,* 24,3575 (1970).
- 2 I. Agrell, Acta Chem. *Scand.*, 24, 3575 (1970).
- 3 I. Agrell, Acta Chem. Scand., 23, 1667 (1969).
- 4 B. J. Hathaway and D. E. Billing, *Coord. Chem. Rev.*, 5, 143 (1970). 5 B. J. Hathawav. Coord. Chem. *Rev.. 3.5,* 211 (1981); _I ~~
- 8. J. Hathaway, *Coord. Chem. Rev.*, $6.41,423$ (1982).
- *Bull. A. S. Goner, A. A. Hasanem and* Bull. Chim. Soc. France, I-221 (1982).
- *M. A. S. Goher, A. A. Hasanein and S. M. Soliman, Bull. Chim. Soc. France*, 1449 (1982).
8 T. C. W. Mak, W. C. Ho and N. Z. Hu
- T. C. W. Mak, W. C. Ho and N. Z. Huang, J. Organomet.
Chem. 251, 413 (1983). $O(nem. 251, 413 (1983)).$
- man, *Acra Cryst., A31,472 (1975).* man, Acta Cryst., A31, 472 (1975).
- 10 J. W. Schilling in 'Crystallographic Computing', F. R. Ahmed, ed., Munksgaard, Copenhagen, 1970, p. 201. $\mathbf{1}$
- B. M. Sheldrick in Computational Crystanography, D. Sayre, ed., Oxford University Press, New York, 1982, p. 506. 12.500 .
 12.500 .
- \overline{a} International Tables for A-Ray Crystallography J. Pickardt, Z. *Naturforsch., 37b,* 110 (1982).
- 15 J. Pickardt, *Z. Naturjorscn.*, *310*, 110 (1982).
M. M. G. Rosenstein, *R. R. R. R. R. Acta Cryst.*
- \overline{a} 14 M. Chao, E. Schempp and R. D. Rosenstein, Acta Cryst., $B31, 2922$ (1975); $\overline{B32}, 2920$ (1976).
- μ Chim. Acta, 43, 29 (1980). *Chim. Acta, 43, 29 (1980).*
-

17 I. Agrell, *Acta Chem. Stand., 20, 1281* (1966). and Coordination Compounds', 3rd ed., Wiley, New anu Cooran
V

- 17 1. Agrell, Acta Chem. Scana., 20, 1281 (1900).
19 Nicolae W. P. Fehlhammer, P. P. H. P. Schuirer.
- 19 *I.* Nakagawa and T. Shimanouchi, *Spectrochim. Acta, 20,* w. beck, w. P. Feninammer, P. Follmann, E. Schulter *Chem., 77,458 (1965).*
- *20* A. Kleinstein and G. A. Webb, J. Inorg. Nucl. *Chem., 33, 429 (1964).*
- *21* P. T. T. Wong and D. G. Brewer, *Can. J.* Chem., 46, *405* (1971).
- 1. 1. W
139 (1969).
- 22 L. Sacconi and L. Bertini, Inorg. Chem., 5, 1520 (1966).
- $\frac{22}{12}$ L. Sacconi and L. Berlini, *Inorg. Chem.*, 5, 1520 (1966). *Soc., Dalton Trans., 2483 (1972).*
Soc., Dalton Trans., 2483 (1972).
L. Chem. Sos. . A. Markamay, L. Chem. Sos.
- $\ddot{}$ *25* A. Maslejova, J. Kohout and J. Gazo, Inorg. *Chim. Acta,* 24 A. A. G. Tomlinson and B. J. Hathaway, *J. Chem. Soc.* (A), 1685 (1968).
- *26* M. J. Bew. B. J. Hathaway and R. J. Fereday, J. *Chem.* 4. masiejova, j.
63. loc. 61000.
- 27.5 Soc., Dalton Trans., 1229 (1972). *M. J. Bew, B. J. Hathaway and I.*
- m. Duggan, N. Ray, B. J. Hathaway, G. Tominison, P. Brint and K. Pelin, J. Chem. Soc., Dalton Trans., 1342 (1980).